Untukmenentukan koordinat titik 1 diperlukan koordinat titik A, sudut jurusan A-1 dan jarak A-1, begitu pula titik 2 diperlukan. koordinat titik 1, sudut jurusan 1-2 dan jarak 1-2 dan seterusnya. Dari gambar di atas, dapat dilihat bahwa: a1 = ab + Sa ab = arc Tg Xb - Xa. 12 = a1 + S1- 180 Yb - Ya.
Padatitik A, B, dan C memiliki jarak masing-masing sebagai berikut: Tabel 1 Jarak Titik terhadap Sumbu-X dan Sumbu-Y. Dari tabel di atas maka untuk menentukan koordinat titik A dan titik B kita menulis dengan pasangan koordinat berurutan ( x, y ). Nilai x dan y dapat bernilai positif dan negative, berbeda dengan jarak yang selalu bernilai positif.
DalamGeometri Koordinat atau Geometri Analitik dalam 2D, ada rumus yang diturunkan dari teorema Pythagoras , untuk menghitung jarak antara dua titik. kita bisa menulisnya sebagai 'Jarak' d =√ [ (x2-x1)2+ (y2-y1)2 ] , Di mana (x1,y1) serta (x2,y2) adalah dua titik pada bidang xy. Penjelasan grafis singkat diikuti oleh 'Tabel Rumus pada Poin
Caritempat di Bumi. Koordinat geografi digunakan untuk mencari titik apa pun di permukaan bumi, kerana ketika garis selari yang melewati titik tersebut dilintasi dengan garis meridian yang menyeberangnya, ia terletak di dalam satah. Apabila ketinggian titik didefinisikan berkenaan dengan permukaan laut, ia terletak di dimensi menegak. Navigasi
16 Geometri Analitik Bidang dan Ruang ⚫ P’ adalah proyeksi titik P pada garis g jika dan hanya jika P’ terletak pada garis g dan ̅̅̅̅̅’ tegak lurus dengan garis g. Gambar 1.2 Koordinat Titik P Perhatikan Gambar 1.2 di atas. Misalkan P adalah sebuah
Vay Tiền Trả Góp 24 Tháng. Kuadran adalah pembagian empat daerah yang sama pada sistem koordinat kartesius Kuadran I daerah sumbu x dan y bernilai positif. Kuadran II daerah sumbu x negatif dan y positif. Kuadran III daerah sumbu x dan y bernilai negatif. Kuadran IV daerah sumbu x positif dan y negatif. Berdasarkan aturan di atas, maka Berdasarkan koordinat kartesius tersebut titik , , , . Titik A terletak pada kuadran II, karena titik A terletak daerah sumbu x negatif dan y positif. Titik B terletak pada kuadran I, karena titik B terletak daerah sumbu x dan y bernilai positif. Titik C terletak pada kuadran IV, karena titik C terletak daerah sumbu x positif dan y negatif. Titik D terletak pada kuadran III, karena titik D terletak daerah sumbu x dan y bernilai negatif. Jadi, koordinat titik terletak pada kuadran II, terletak pada kuadran I, terletak pada kuadran IV, dan terletak pada kuadran III.
A. Ax,y = A0,a x=0 y=a => a= - 2 = a = -2 jadi koordinat titik A0, -2B. A0,b = Ax,y => 2b= -0+4 = b=2 jadi A0,2C. A0,c =Ax,y - 4c = 12 = c =-3 jadi A0,-3
MENENTUKAN KOORDINAT SUATU TITIK PADA RUAS GARIS September 19th, 2016 Barangkali adik-adik di SMA atau SMP pernah mendapatkan soal matematika seperti ini. Diketahui dua buah titik A-1,4 dan B6,1. Titik P terletak pada ruas garis [pmath]overline{AB}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{PB}}{}~=~2~~3[/pmath]. Tentukanlah koordinat P. Inilah yang akan dibahas pada post kali ini. Mari kita turunkan dulu rumusnya … Misalkan A dan B adalah dua titik yang koordinatnya diketahui dan P adalah suatu titik pada ruas garis [pmath]overline{AB}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{PB}}{}~=~m~~n[/pmath]. Lihat Gambar 1. Gambar 1 Pada Gambar 1, A dan B adalah titik-titik yang koordinatnya diketahui. [pmath]vec{A},~ vec{B},~ vec{P}[/pmath] masing-masing adalah, secara berturutan, vektor posisi A, B, dan P, dengan titik pangkal koordinat O. Karena koordinat A dan B diketahui, vektor posisi A dan B dapat ditentukan. Sekarang kita akan mencari vektor posisi P sehingga koordinat P dapat ditentukan. Perhatikan bahwa [pmath]vec{AP}={m}/{m+n} vec{AB}[/pmath]. Apabila dinyatakan dalam vektor posisi, kesamaan ini dapat dinyatakan sebagai [pmath]vec{P}~-~vec{A}~=~{m}/{m+n} delim{[}{vec{B}~-~vec{A}}{]}[/pmath] [pmath]vec{P}~=~{m}/{m+n} vec{B}~-~ {m}/{m+n} vec{A}~ + ~ vec{A}[/pmath] [pmath]vec{P}~=~ {m}/{m+n} vec{B} ~+~ {n}/{m+n} vec{A}[/pmath] [pmath]vec{P}~=~ {m vec{B} ~+~ n vec{A}}/{m+n}[/pmath] …………………………………………. * Dari *, koordinat P dengan mudah diperoleh. Coba kita terapkan * pada contoh soal di awal post ini. Situasi pada contoh tersebut dapat digambarkan sebagai berikut. Gambar 2 Vektor posisi dari A adalah [pmath]vec{A}~=~ delim{[}{matrix{2}{1}{{-1} 4}}{]}[/pmath] dan vektor posisi B adalah [pmath]vec{B}~=~ delim{[}{matrix{2}{1}{6 1}}{]}[/pmath]. Pada contoh ini, m = 2 dan n = 3. Substitusikan nilai-nilai ini ke dalam *, diperoleh [pmath]vec{P}~=~ {2 delim{[}{matrix{2}{1}{6 1}}{]}~+~ 3 delim{[}{matrix{2}{1}{{-1} 4}}{]}}/{2+3}[/pmath] [pmath]vec{P}~=~{1}/{5} delim{[}{matrix{2}{1}{9 14}}{]}[/pmath] [pmath]vec{P}~=~ delim{[}{matrix{2}{1}{{1{4/5}} {2{4/5}}}}{]}[/pmath] Dengan demikian diperoleh koordinat [pmath]P1{4/5},2{4/5}[/pmath]. PERLUASAN Sekarang bagaimana apabila titik P yang dimaksud di atas bukan terletak pada ruas garis penghubung A dan B, melainkan P ini terletak pada perpanjangan ruas garis tersebut searah [pmath]vec{BA}[/pmath]? Perhatikan contoh berikut. Diketahui dua buah titik A-1,4 dan B6,1. Titik P terletak pada perpanjangan ruas garis [pmath]overline{BA}[/pmath] searah [pmath]vec{BA}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{BP}}{}~=~1~~5[/pmath]. Tentukanlah koordinat P. Situasi pada contoh kedua ini digambarkan sebagai berikut. Gambar 3 Pada contoh kedua ini, seolah-olah A dan P berganti peran. Dalam penurunan rumus *, P berperan sebagai suatu titik pada ruas garis yang menghubungkan A dan B yang diketahui masing-masing koordinatnya. Pada contoh kali ini, A yang koordinatnya diketahui berperan sebagai salah satu titik pada ruas garis yang menghubungkan P yang tidak diketahui koordinatnya dan B yang diketahui koordinatnya. Jadi, rumus * “dimodifikasi” menjadi [pmath]vec{A}~=~ {m vec{B} ~+~ n vec{P}}/{m+n}[/pmath] …………………………………………………… ** Pada Gambar 3 dituliskan [pmath]delim{}{overline{BA}}{} ~~ delim{}{overline{AP}}{} ~=~ 4~~1[/pmath]. Ini adalah karena [pmath]delim{}{overline{BP}}{} ~~ delim{}{overline{AP}}{} ~=~ 5~~1[/pmath], sedangkan [pmath]delim{}{overline{BA}}{} ~=~ delim{}{overline{BP}}{} ~-~ delim{}{overline{AP}}{} ~=~ 5 ~-~ 1 ~=~4[/pmath]. Jadi, pada contoh ini, m = 1 dan n = 4. Substitusikan semua nilai yang diketahui ke dalam **, diperoleh [pmath]vec{A}~=~ {vec{B} ~+~ 4 vec{P}}/5[/pmath] [pmath]vec{P}~=~ {5 vec{A} ~-~ vec{B}}/4[/pmath] [pmath]vec{P} ~=~ {5 delim{[}{matrix{2}{1}{{-1} 4}}{]} ~-~ delim{[}{matrix{2}{1}{6 1}}{]}}/4 ~=~ delim{[}{matrix{2}{1}{{-2{3/4}} {4{3/4}}}}{]}[/pmath] Jadi, diperolehlah jawaban yang diminta, yaitu [pmath]P-2{3/4},4{3/4}[/pmath]. Most visitors also read Satu tanggapan untuk “MENENTUKAN KOORDINAT SUATU TITIK PADA RUAS GARIS” Sangat Membantu Terimakasih Tinggalkan Balasan
KOORDINAT KARTESIUS Bidang datar disamping disebut bidang koordinat yang dibentuk oleh garis tegak Y sumbu Y dan garis mendatar X sumbu X. Titik perpotongan antara garis Y dan garis X disebut pusat Koordinat titik O. Bidang koordinat tersebut dikenal dengan bidang koordinat Cartesius. Bidang koordinat Cartesius digunakan untuk menentukan letak sebuah titik yang dinyatakan dalam pasangan bilangan. Perhatikan titik A, B, C, dan D padabidang tersebut. Untuk menentukan letaknya, mulailah dari titik O. Kemudian, bergerak mendatar kea rah kanan sumbu X, lalu bergerak ke atas sumbu Y. Letak titik pada bidang koordinat Cartesius ditulis dalam bentuk pasangan bilangan x, y x disebut absis dan y disebut ordinat. Pada bidang koordinat tersebut, titik A terletak pada koordinat 1,0, ditulis A1,0, titik B terletak pada koordinat 2,4, ditulis B2,4, titik C terletak pada koordinat 5,7, ditulis dengan C5,7, dan titik D terletak pada koordinat 6,4 ditulis D6,4. Bidang koordinat Cartesius dapat diperluas menjadi seperti pada gambar berikut ini Contoh Koordinat titik E adalah 2,2 Koordinat titik F adalah -2,1, diperoleh dengan bergerak mendatar ke kiri dimulai dari titik O sebanyak dua satuan lalu tegak keatas sebanyak satu satuan. Koordinat titik G adalah -3,-3, diperoleh dengan bergerak mendatar ke kiri dimulai dari titik O sebanyak tiga satuan lalu tegak ke bawah sebanyak tiga satuan. KOORDINAT POLAR/ KUTUB Sistem koordinat kutub dalam suatu bidang terdiri dari satu titik tetap O yang disebut titik asal atau titik kutub dan sebuah garis berarah yang bermula dari titik asal tersebut, yang disebut dengan sumbu kutub. Dalam koordinat kutub, setiap titik P dinyatakan dalam pasangan r, θ, di mana r adalah jarak titik P ke titik asal, dan θ adalah sudut dari sumbu kutub ke garis OP. Bilangan r disebut koordinat radial dan q disebut koordinat angular atau sudut kutub dari P. Sudut dinyatakan dalam angka positif jika diukur berlawanan jarum jam dan dinyatakan dengan angka negatif jika diukur searah jarum jam. Beberapa contoh koordinat kutub Beberapa koordinat kutub ini menyatakan posisi titik yang sama Hubungan antara Koordinat Kutub dan Koordinat Cartesius Hubungan antara koordinat kutub dan koordinat Cartesius dapat dilihat pada gambar berikut ini Untuk menyatakan koordinat Cartesius dalam koordinat kutub dapat digunakan rumus berikut Sedangkan untuk menyatakan koordinat kutub dalam koordinat Cartesius dapat digunakan rumus berikut Contoh 1 Untuk lebih memahami materi di atas mari kita ikuti video berikut ini
Titik yang terletak pada koordinat A adalah? -3, 5 5, -3 3, 5 5, 3 Semua jawaban benar Jawaban yang benar adalah A. -3, 5. Dilansir dari Ensiklopedia, titik yang terletak pada koordinat a adalah -3, 5. [irp] Pembahasan dan Penjelasan Menurut saya jawaban A. -3, 5 adalah jawaban yang paling benar, bisa dibuktikan dari buku bacaan dan informasi yang ada di google. Menurut saya jawaban B. 5, -3 adalah jawaban yang kurang tepat, karena sudah terlihat jelas antara pertanyaan dan jawaban tidak nyambung sama sekali. [irp] Menurut saya jawaban C. 3, 5 adalah jawaban salah, karena jawaban tersebut lebih tepat kalau dipakai untuk pertanyaan lain. Menurut saya jawaban D. 5, 3 adalah jawaban salah, karena jawaban tersebut sudah melenceng dari apa yang ditanyakan. [irp] Menurut saya jawaban E. Semua jawaban benar adalah jawaban salah, karena setelah saya coba cari di google, jawaban ini lebih cocok untuk pertanyaan lain. Kesimpulan Dari penjelasan dan pembahasan serta pilihan diatas, saya bisa menyimpulkan bahwa jawaban yang paling benar adalah A. -3, 5. [irp] Jika anda masih punya pertanyaan lain atau ingin menanyakan sesuatu bisa tulis di kolom kometar dibawah.
titik a terletak pada koordinat